Asymptotic lower bounds for Ramsey functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Bounds for Bipartite Ramsey Numbers

The bipartite Ramsey number b(m,n) is the smallest positive integer r such that every (red, green) coloring of the edges of Kr,r contains either a red Km,m or a green Kn,n. We obtain asymptotic bounds for b(m, n) for m ≥ 2 fixed and n →∞.

متن کامل

New lower bounds for hypergraph Ramsey numbers

The Ramsey number rk(s, n) is the minimum N such that for every red-blue coloring of the k-tuples of {1, . . . , N}, there are s integers such that every k-tuple among them is red, or n integers such that every k-tuple among them is blue. We prove the following new lower bounds for 4-uniform hypergraph Ramsey numbers: r4(5, n) > 2 n log n and r4(6, n) > 2 2 1/5 , where c is an absolute positive...

متن کامل

Se p 20 16 Abelian Ramsey Length and Asymptotic Lower Bounds ∗

Let A and V be two alphabets. A word on A is a finite sequence a = a1a2 · · ·ak of elements of A. The elements ai are called the letters of the word a, and the integer k is the length of a. For all elements α ∈ A, we denote by |a|α the cardinality of the set {i : ai = α}, i.e. number of occurrences of the letter α in the word a. We also denote by A∗ the set of all words on A. The words aiai+1 ·...

متن کامل

Luus-Jaakola Optimization Procedure for Ramsey Number Lower Bounds

Ramsey numbers have been widely studied for decades, but the exact values for all but a handful are still unknown. In recent years, optimization algorithms have proven useful in calculating lower bounds for certain Ramsey numbers. In this paper, we define an optimization algorithm based on the Luus-Jaakola procedure to calculate Ramsey number lower bounds. We demonstrate the effectiveness of th...

متن کامل

A note on lower bounds for hypergraph Ramsey numbers

We improve upon the lower bound for 3-colour hypergraph Ramsey numbers, showing, in the 3-uniform case, that r3(l, l, l) ≥ 2 c log log l . The old bound, due to Erdős and Hajnal, was r3(l, l, l) ≥ 2 2 log2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1977

ISSN: 0012-365X

DOI: 10.1016/0012-365x(77)90044-9